Natural versus synthetic stimuli for estimating receptive field models: a comparison of predictive robustness.

نویسندگان

  • Vargha Talebi
  • Curtis L Baker
چکیده

An ultimate goal of visual neuroscience is to understand the neural encoding of complex, everyday scenes. Yet most of our knowledge of neuronal receptive fields has come from studies using simple artificial stimuli (e.g., bars, gratings) that may fail to reveal the full nature of a neuron's actual response properties. Our goal was to compare the utility of artificial and natural stimuli for estimating receptive field (RF) models. Using extracellular recordings from simple type cells in cat A18, we acquired responses to three types of broadband stimulus ensembles: two widely used artificial patterns (white noise and short bars), and natural images. We used a primary dataset to estimate the spatiotemporal receptive field (STRF) with two hold-back datasets for regularization and validation. STRFs were estimated using an iterative regression algorithm with regularization and subsequently fit with a zero-memory nonlinearity. Each RF model (STRF and zero-memory nonlinearity) was then used in simulations to predict responses to the same stimulus type used to estimate it, as well as to other broadband stimuli and sinewave gratings. White noise stimuli often elicited poor responses leading to noisy RF estimates, while short bars and natural image stimuli were more successful in driving A18 neurons and producing clear RF estimates with strong predictive ability. Natural image-derived RF models were the most robust at predicting responses to other broadband stimulus ensembles that were not used in their estimation and also provided good predictions of tuning curves for sinewave gratings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptive Field Encoding Model for Dynamic Natural Vision

Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...

متن کامل

Natural stimulus statistics alter the receptive field structure of v1 neurons.

Studies of the primary visual cortex (V1) have produced models that account for neuronal responses to synthetic stimuli such as sinusoidal gratings. Little is known about how these models generalize to activity during natural vision. We recorded neural responses in area V1 of awake macaques to a stimulus with natural spatiotemporal statistics and to a dynamic grating sequence stimulus. We fit n...

متن کامل

An Efficient Algorithm for General 3D-Seismic Body Waves (SSP and VSP Applications)

Abstract The ray series method may be generalized using a ray centered coordinate system for general 3D-heterogeneous media. This method is useful for Amplitude Versus Offset (AVO) seismic modeling, seismic analysis, interpretational purposes, and comparison with seismic field observations.For each central ray (constant ray parameter), the kinematic (the eikonal) and dynamic ray tracing system ...

متن کامل

Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions

The reasons for using natural stimuli to study sensory function are quickly mounting, as recent studies have revealed important differences in neural responses to natural and artificial stimuli. However, natural stimuli typically contain strong correlations and are spherically asymmetric (i.e. stimulus intensities are not symmetrically distributed around the mean), and these statistical complex...

متن کامل

Estimating spatio-temporal receptive fields of auditory and visual neurons from their responses to natural stimuli.

We present a generalized reverse correlation technique that can be used to estimate the spatio-temporal receptive fields (STRFs) of sensory neurons from their responses to arbitrary stimuli such as auditory vocalizations or natural visual scenes. The general solution for STRF estimation requires normalization of the stimulus-response cross-correlation by the stimulus autocorrelation matrix. Whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2012